cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370736 a(n) = 4^n * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/4).

This page as a plain text file.
%I A370736 #6 Feb 29 2024 06:23:39
%S A370736 1,2,2,76,-106,1788,-1516,57176,-276634,2270444,-10094212,97699752,
%T A370736 -664173444,4819718488,-33236872088,259931360688,-1894783205754,
%U A370736 13983087008588,-103270227527444,779496572387208,-5855545477963244,44016069418771976,-331519650617078376,2514477954420678352
%N A370736 a(n) = 4^n * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/4).
%F A370736 G.f.: Product_{k>=1} (1 + 2*(4*x)^k)^(1/4).
%F A370736 a(n) ~ (-1)^(n+1) * QPochhammer(-1/2)^(1/4) * 8^n / (4 * Gamma(3/4) * n^(5/4)).
%t A370736 nmax = 25; CoefficientList[Series[Product[1+2*x^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 4^Range[0, nmax]
%t A370736 nmax = 25; CoefficientList[Series[Product[1+2*(4*x)^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
%Y A370736 Cf. A032302 (m=1), A370709 (m=2), A370716 (m=3), A370737 (m=5).
%K A370736 sign
%O A370736 0,2
%A A370736 _Vaclav Kotesovec_, Feb 28 2024