cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370737 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/5).

This page as a plain text file.
%I A370737 #6 Feb 29 2024 06:23:33
%S A370737 1,10,50,14750,-166250,14011250,-133418750,18136968750,-620089531250,
%T A370737 29520532031250,-917207280468750,51260806902343750,
%U A370737 -2257145499863281250,101035630688769531250,-4434459153208496093750,214279556679692871093750,-9859289197933918457031250,454976266920750451660156250
%N A370737 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/5).
%F A370737 G.f.: Product_{k>=1} (1 + 2*(25*x)^k)^(1/5).
%F A370737 a(n) ~ (-1)^(n+1) * QPochhammer(-1/2)^(1/5) * 50^n / (5 * Gamma(4/5) * n^(6/5)).
%t A370737 nmax = 20; CoefficientList[Series[Product[1+2*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
%t A370737 nmax = 20; CoefficientList[Series[Product[1+2*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
%Y A370737 Cf. A032302 (m=1), A370709 (m=2), A370716 (m=3), A370736 (m=4).
%K A370737 sign
%O A370737 0,2
%A A370737 _Vaclav Kotesovec_, Feb 28 2024