cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370738 a(n) = 8^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/4).

This page as a plain text file.
%I A370738 #6 Feb 29 2024 06:23:28
%S A370738 1,6,-6,1428,-13146,280788,-3785820,93142824,-1851272826,37533646212,
%T A370738 -765409050420,16617464296728,-357906128318628,7730398360992840,
%U A370738 -168750405673899000,3719099270015849040,-82288133754592611642,1828585054153956768612,-40828782977534929747524,915461326204911371035320
%N A370738 a(n) = 8^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/4).
%F A370738 G.f.: Product_{k>=1} (1 + 3*(8*x)^k)^(1/4).
%F A370738 a(n) ~ (-1)^(n+1) * QPochhammer(-1/3)^(1/4) * 24^n / (4 * Gamma(3/4) * n^(5/4)).
%t A370738 nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 8^Range[0, nmax]
%t A370738 nmax = 20; CoefficientList[Series[Product[1+3*(8*x)^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
%Y A370738 Cf. A032308 (m=1), A370711 (m=2), A370712 (m=3), A370739 (m=5).
%K A370738 sign
%O A370738 0,2
%A A370738 _Vaclav Kotesovec_, Feb 28 2024