A370739 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/5).
1, 15, -75, 35250, -1138125, 72645000, -3307996875, 244578890625, -15502648125000, 985908809765625, -63515254624218750, 4314500023927734375, -291905297026816406250, 19789483493484814453125, -1355414138248614990234375, 93666904586649390380859375, -6498800175020013123779296875
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax] nmax = 20; CoefficientList[Series[Product[1+3*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} (1 + 3*(25*x)^k)^(1/5).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/3)^(1/5) * 75^n / (5 * Gamma(4/5) * n^(6/5)).
Comments