A370744 a(n) is the greatest Fibonacci number f such that f AND n = f (where AND denotes the bitwise AND operator).
0, 1, 2, 3, 0, 5, 2, 5, 8, 8, 8, 8, 8, 13, 8, 13, 0, 1, 2, 3, 0, 21, 2, 21, 8, 8, 8, 8, 8, 21, 8, 21, 0, 1, 34, 34, 0, 5, 34, 34, 8, 8, 34, 34, 8, 13, 34, 34, 0, 1, 34, 34, 0, 21, 34, 55, 8, 8, 34, 34, 8, 21, 34, 55, 0, 1, 2, 3, 0, 5, 2, 5, 8, 8, 8, 8, 8, 13
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
Maple
Fib:= [seq(combinat:-fibonacci(n),n=0..100)]: f:= proc(n) local m,k; m:= ListTools:-BinaryPlace(Fib,n+1); for k from m by -1 do if MmaTranslator:-Mma:-BitAnd(Fib[k],n) = Fib[k] then return Fib[k] fi od end proc: map(f, [$0..100]); # Robert Israel, Mar 01 2024
-
PARI
a(n) = { my (v = 0, f); for (k = 2, oo, f = fibonacci(k); if (f > n, return (v), bitand(f, n)==f, v = f);); }
Formula
a(n) <= n with equality iff n is a Fibonacci number.
Comments