cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370751 a(n) = 2^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/2).

This page as a plain text file.
%I A370751 #5 Feb 29 2024 10:47:30
%S A370751 1,6,30,204,966,5748,29388,169944,886278,5169732,27794820,162920616,
%T A370751 894445212,5274022920,29398573272,174041671344,980746798278,
%U A370751 5821525480164,33071756442708,196663513473672,1124154722216244,6693497121210648,38448301937075112,229149691659210192
%N A370751 a(n) = 2^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/2).
%F A370751 G.f.: Product_{k>=1} ((1 + 3*(2*x)^k)/(1 - 3*(2*x)^k))^(1/2).
%F A370751 a(n) ~ c * 6^n / n^(1/2), where c = (QPochhammer(-1,1/3) / (Pi * QPochhammer(1/3)))^(1/2) = 1.333660169175690343841707335109800906849893636...
%t A370751 nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax]
%t A370751 nmax = 30; CoefficientList[Series[Product[(1 + 3*(2*x)^k)/(1 - 3*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
%Y A370751 Cf. A303390, A370752.
%Y A370751 Cf. A032308, A242587.
%Y A370751 Cf. A370711, A370714.
%K A370751 nonn
%O A370751 0,2
%A A370751 _Vaclav Kotesovec_, Feb 29 2024