cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370754 a(n) = 2 + n^2*floor((n+3)/2) + floor(3*n/2).

Original entry on oeis.org

5, 13, 33, 56, 109, 155, 257, 334, 501, 617, 865, 1028, 1373, 1591, 2049, 2330, 2917, 3269, 4001, 4432, 5325, 5843, 6913, 7526, 8789, 9505, 10977, 11804, 13501, 14447, 16385, 17458, 19653, 20861, 23329, 24680, 27437, 28939, 32001, 33662, 37045, 38873, 42593, 44596
Offset: 1

Views

Author

Chai Wah Wu, Feb 29 2024

Keywords

Comments

{1, 2, n+2, n^2+n+2, a(n)} is the lexicographically first set of 5 positive integers with the property that the sum of any n nondecreasing terms (repetitions allowed) is unique.

Crossrefs

Programs

  • Mathematica
    A370754[n_] := 2 + n^2*Floor[(n+3)/2] + Floor[3*n/2]; Array[A370754, 50] (* or *)
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {5, 13, 33, 56, 109, 155, 257}, 50] (* Paolo Xausa, Mar 08 2024 *)

Formula

Column 5 of A347570.
a(n) = A369817(n) + 1.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
G.f.: x*(-2*x^6 + x^5 + 8*x^4 - x^3 + 5*x^2 + 8*x + 5)/((x - 1)*(x^2 - 1)^3).