This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370757 #26 Mar 04 2024 11:52:48 %S A370757 1,1,3,1,1,6,7,1,9,1,11,3,13,7,6,1,17,18,19,1,21,22,23,6,1,26,27,7,29, %T A370757 3,31,1,33,17,7,36,37,19,39,1,41,42,43,44,45,23,47,3,49,1,51,13,53,54, %U A370757 55,7,57,29,59,6,61,31,63,1,26,66,67,17,69,7,71,72 %N A370757 a(n) is the least k > 0 such that 1/n and 1/k have equivalent repeating decimal digits. %C A370757 In other words, a(n) is the least k > 0 such that the fractional parts of (10^i)/n and (10^j)/k are equal for some integers i, j. %C A370757 a(n) is not always a divisor of n. For example, a(65) = 26 is not a divisor of 65. - _David A. Corneth_, Mar 01 2024 %H A370757 Rémy Sigrist, <a href="/A370757/b370757.txt">Table of n, a(n) for n = 1..10000</a> %H A370757 Rémy Sigrist, <a href="/A370757/a370757.gp.txt">PARI program</a> %H A370757 <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n</a> %F A370757 a(n) = 1 iff n belongs to A003592. %F A370757 a(10*n) = a(n). %F A370757 A007732(a(n)) = A007732(n). %e A370757 The first terms, alongside the decimal expansion of 1/n with its repeating decimal digits in parentheses, are: %e A370757 n a(n) 1/n %e A370757 -- ---- ----------- %e A370757 1 1 1.(0) %e A370757 2 1 0.5(0) %e A370757 3 3 0.(3) %e A370757 4 1 0.25(0) %e A370757 5 1 0.2(0) %e A370757 6 6 0.1(6) %e A370757 7 7 0.(142857) %e A370757 8 1 0.125(0) %e A370757 9 9 0.(1) %e A370757 10 1 0.1(0) %e A370757 11 11 0.(09) %e A370757 12 3 0.08(3) %e A370757 13 13 0.(076923) %e A370757 14 7 0.07(142857) %e A370757 15 6 0.0(6) %o A370757 (PARI) \\ See Links section. %o A370757 (Python) %o A370757 from itertools import count %o A370757 from sympy import multiplicity, n_order %o A370757 def A370757(n): %o A370757 m2, m5 = (~n & n-1).bit_length(), multiplicity(5,n) %o A370757 r = max(m2,m5) %o A370757 w, m = 10**r, 10**(t:=n_order(10,n2) if (n2:=(n>>m2)//5**m5)>1 else 1)-1 %o A370757 c = w//n %o A370757 s = str(m*w//n-c*m).zfill(t) %o A370757 l = len(s) %o A370757 for k in count(1): %o A370757 m2, m5 = (~k & k-1).bit_length(), multiplicity(5,k) %o A370757 r = max(m2,m5) %o A370757 w, m = 10**r, 10**(t:=n_order(10,k2) if (k2:=(k>>m2)//5**m5)>1 else 1)-1 %o A370757 c = w//k %o A370757 if any(s[i:]+s[:i] == str(m*w//k-c*m).zfill(t) for i in range(l)): %o A370757 return k # _Chai Wah Wu_, Mar 03 2024 %Y A370757 Cf. A000265 (base-2 analog), A038502 (base-3 analog), A132739 (base-5 analog), A242603 (base-7 analog). %Y A370757 Cf. A003592, A007732, A132740. %K A370757 nonn,base %O A370757 1,3 %A A370757 _Rémy Sigrist_, Feb 29 2024