cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370764 a(n) = 4^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/2).

This page as a plain text file.
%I A370764 #10 Mar 09 2024 05:30:07
%S A370764 1,10,62,1620,6966,157580,1284012,19189160,73908774,2233414620,
%T A370764 9656822916,287668788120,-324007115716,40151699854200,
%U A370764 -199460032590312,7130611518222160,-64971542557275642,1292318115470489340,-15433712240157937260,265667290368470451000,-3624776372747687578668
%N A370764 a(n) = 4^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/2).
%C A370764 In general, if d > 1 and g.f. = Product_{k>=1} ((1 + d^(k+1)*x^k) * (1 + d^(k-1)*x^k))^(1/2), then a(n) ~ (-1)^(n+1) * QPochhammer(-1/d) * d^(2*n) / (2*sqrt((1 + 1/d)*Pi) * n^(3/2)).
%F A370764 G.f.: Product_{k>=1} ((1 + 2^(3*k+1)*x^k) * (1 + 2^(3*k-1)*x^k))^(1/2).
%F A370764 a(n) ~ (-1)^(n+1) * c * 16^n / n^(3/2), where c = QPochhammer(-1/2) / sqrt(6*Pi) = 0.278865402428524528968820654198674...
%t A370764 nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*x^k)*(1+2^(k-1)*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
%t A370764 nmax = 25; CoefficientList[Series[Product[(1+2^(3*k+1)*x^k)*(1+2^(3*k-1)*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
%t A370764 nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, x]*QPochhammer[-1/2, x])^(1/2)/3, {x, 0, nmax}], x] * 8^Range[0, nmax]
%Y A370764 Cf. A032302, A304961, A370709, A370761, A370765.
%K A370764 sign
%O A370764 0,2
%A A370764 _Vaclav Kotesovec_, Mar 01 2024