cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370769 Number of achiral unicursal star polygons (no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon.

This page as a plain text file.
%I A370769 #6 Mar 06 2024 18:18:41
%S A370769 0,0,0,0,1,1,5,11,49,123,521,1583,6581,23239,95509,384771,1570265,
%T A370769 7106995,28869825,145034327,587270877,3242792607,13100475021,
%U A370769 78866628011,318067071169,2073381189259,8350998470777,58602568320255,235794888434053,1772311322357623
%N A370769 Number of achiral unicursal star polygons (no edge joins adjacent vertices) that can be formed by connecting the vertices of a regular n-gon.
%C A370769 Achiral means that the polygon has an axis of reflective symmetry.
%H A370769 Andrew Howroyd, <a href="/A370769/b370769.txt">Table of n, a(n) for n = 1..200</a>
%F A370769 a(2*n+1) = A370766(n)/2 - A370768(n-1) for n >= 1.
%F A370769 a(2*n) = (A370766(n-1)/2 - A370768(n-2) + A370766(n)/4 - A370768(n-1) + A283184(n-1)/2)/2 for n >= 2.
%o A370769 (PARI)
%o A370769 Ro(n)=-(-1)^n + subst(serlaplace(polcoef(((1 - x)^2)/(2*(1 + x)*(1 + (1 - 2*y)*x + 2*y*x^2)) + O(x*x^n), n)), y, 1)
%o A370769 Re(n)=subst(serlaplace(polcoef((1 - 3*x)/(8*(1 + (1 - 2*y)*x + 2*y*x^2)) + O(x*x^n), n)), y, 1)
%o A370769 a(n) = if(n < 3, 0, if(n % 2, Ro(n\2), Re(n/2)))
%Y A370769 Cf. A283184, A370766, A370767, A370768.
%Y A370769 Cf. A231091 (stars up to rotation), A370459 (up to rotation and reflection).
%K A370769 nonn
%O A370769 1,7
%A A370769 _Andrew Howroyd_, Mar 01 2024