This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370774 #17 Jun 09 2024 23:58:54 %S A370774 1,4,18,144,600,3600,44100,78400,635040,254016,12806640,153679680, %T A370774 1855133280,8657288640,16232416200,519437318400,8339854723200, %U A370774 150117385017600,541923759913536,516117866584320 %N A370774 Denominator of the n-th partial sum of the generalized harmonic numbers A007406/A007407. %C A370774 Partial sums of A007406/A007407 are 1, 9/4, 65/18, 725/144, 3899/600, 28763/3600, ... %p A370774 A007406_7 := proc(n) %p A370774 local i; %p A370774 add(1/i^2,i=1..n) ; %p A370774 end proc: %p A370774 A370774 := proc(n) %p A370774 add( A007406_7(i),i=1..n) ; %p A370774 denom(%) ; %p A370774 end proc: %p A370774 seq(A370774(n),n=1..20) ; %t A370774 Table[-EulerGamma + HarmonicNumber[1 + n, 2] + n*HarmonicNumber[1 + n, 2] - PolyGamma[0, 2 + n], {n, 1, 20}] // Denominator (* _Vaclav Kotesovec_, May 02 2024 *) %o A370774 (PARI) a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i^2))); \\ _Michel Marcus_, May 01 2024 %o A370774 (Python) %o A370774 from fractions import Fraction %o A370774 def A370774(n): return sum(Fraction(n-i+1,i**2) for i in range(1,n+1)).denominator # _Chai Wah Wu_, May 01 2024 %Y A370774 Cf. A120286 (numerators). %K A370774 nonn,frac,easy %O A370774 1,2 %A A370774 _R. J. Mathar_, May 01 2024