cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370783 a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.

This page as a plain text file.
%I A370783 #9 Mar 02 2024 03:51:09
%S A370783 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,3,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,3,1,1,
%T A370783 1,2,1,1,1,3,1,1,1,3,4,1,1,3,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,3,1,1,1,3,
%U A370783 1,1,1,2,1,1,6,3,1,1,1,3,4,1,1,3,1,1,1
%N A370783 a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.
%H A370783 Amiram Eldar, <a href="/A370783/b370783.txt">Table of n, a(n) for n = 1..10000</a>
%H A370783 Rafael Jakimczuk, <a href="http://dx.doi.org/10.13140/RG.2.2.12174.13124">Arithmetical Functions over the Powerful Part of an Integer</a>, ResearchGate, 2024.
%F A370783 a(n) = A332880(A057521(n)).
%F A370783 Let f(n) = a(n)/A370784(n):
%F A370783 f(n) is multiplicative with f(p) = 1 and f(p^e) = 1 + 1/p for e >= 2.
%F A370783 f(n) = 1 if and only if n is squarefree (A005117).
%F A370783 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = zeta(3)/zeta(6) = 1.181564... (A157289) (Jakimczuk, 2024).
%e A370783 Fractions begin with: 1, 1, 1, 3/2, 1, 1, 1, 3/2, 4/3, 1, 1, 3/2, ...
%t A370783 a[n_] := Numerator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
%o A370783 (PARI) a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + 1/f[i,1])));}
%Y A370783 Cf. A005117, A057521, A157289, A295295, A332880, A370784 (denominators).
%K A370783 nonn,easy,frac
%O A370783 1,4
%A A370783 _Amiram Eldar_, Mar 02 2024