A370792 Expansion of Product_{k>=1} (1 + 3^(k+1)*x^k) * (1 + 3^(k-1)*x^k).
1, 10, 39, 390, 1521, 7830, 49518, 207360, 951102, 4264650, 22185657, 89579520, 401428224, 1676401110, 7172977275, 31972081050, 130330236546, 537393139200, 2213787635712, 8988968449530, 36073295687070, 150459195064320, 590262148332288, 2362876271009370, 9314694641056095
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 25; CoefficientList[Series[Product[(1+3^(k+1)*x^k)*(1+3^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ 3^(n + 1/2) * exp(sqrt(2*n*(Pi^2/3 + log(3)^2))) * (Pi^2/3 + log(3)^2)^(1/4) / (2^(13/4) * sqrt(Pi) * n^(3/4)).
Comments