A370796 Number of primes between (prime(n)+1)^2 and (prime(n+1)-1)^2.
2, 0, 0, 7, 0, 10, 0, 14, 32, 0, 38, 23, 0, 24, 51, 53, 0, 62, 30, 0, 71, 33, 76, 124, 44, 0, 42, 0, 51, 301, 48, 114, 0, 233, 0, 122, 126, 59, 135, 133, 0, 283, 0, 66, 0, 386, 396, 77, 0, 86, 173, 0, 349, 177, 187, 198, 0, 199, 100, 0, 412, 636, 113, 0, 114, 668, 224, 463, 0, 119, 236, 359
Offset: 1
Keywords
Examples
For n=1, (prime(1+1)-1)^2 = 4, (prime(1)+1)^2 = 9 and we have two primes between 4 and 9, so a(1)=2.
Crossrefs
Cf. A050216.
Programs
-
Maple
A370796:= proc (n) local count, a, b, p: count := 0: a := (ithprime(n)+1)^2: b := (ithprime(n+1)-1)^2: p := n: while ithprime(p) <= b do if a <= ithprime(p) then count := count+1 end if: p := p+1 end do: return count end proc: A370796(1) := 2: map(A370796, [$1 .. 100]);
-
Mathematica
Table[Abs[ PrimePi[(Prime[n+1]-1)^2]- PrimePi[(Prime[n]+1)^2]],{n,72}] (* James C. McMahon, Mar 02 2024 *)
-
Python
from sympy import primepi, prime, nextprime def A370796(n): return -primepi(((p:=prime(n))+1)**2)+primepi((nextprime(p)-1)**2) if n>1 else 2 # Chai Wah Wu, Mar 27 2024
Comments