This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370804 #12 Feb 14 2025 09:45:47 %S A370804 0,0,0,0,0,0,1,0,1,2,3,3,6,6,12,14,21,25,37,43,62,75,101,124,167,198, %T A370804 261,316,401,488,618,745,930,1119,1379,1664,2032,2433,2960,3537,4259, %U A370804 5076,6094,7227,8629,10205,12126,14302,16932,19893,23471,27502,32315,37775 %N A370804 Number of non-condensed integer partitions of n into parts > 1. %C A370804 These are partitions without ones such that it is not possible to choose a different divisor of each part. %e A370804 The a(6) = 1 through a(14) = 12 partitions: %e A370804 (222) . (2222) (333) (3322) (3332) (3333) (4333) (4442) %e A370804 (3222) (4222) (5222) (4422) (7222) (5333) %e A370804 (22222) (32222) (6222) (33322) (5522) %e A370804 (33222) (43222) (8222) %e A370804 (42222) (52222) (33332) %e A370804 (222222) (322222) (43322) %e A370804 (44222) %e A370804 (53222) %e A370804 (62222) %e A370804 (332222) %e A370804 (422222) %e A370804 (2222222) %t A370804 Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]==0&]],{n,0,30}] %Y A370804 These partitions have as ranks the odd terms of A355740. %Y A370804 The version with ones is A370320, complement A239312. %Y A370804 The complement without ones is A370805. %Y A370804 The version for prime factors is A370807, with ones A370593. %Y A370804 The version for factorizations is A370813, complement A370814. %Y A370804 A000005 counts divisors. %Y A370804 A000041 counts integer partitions, strict A000009. %Y A370804 A027746 lists prime factors, A112798 indices, length A001222. %Y A370804 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A370804 A355741, A355744, A355745 choose prime factors of prime indices. %Y A370804 Cf. A355529, A355739, A367867, A367901, A368110, A368413, A370595, A370806, A370808, A370810. %K A370804 nonn %O A370804 0,10 %A A370804 _Gus Wiseman_, Mar 03 2024 %E A370804 More terms from _Jinyuan Wang_, Feb 14 2025