This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370805 #13 Feb 14 2025 09:46:04 %S A370805 1,0,1,1,2,2,3,4,6,6,9,11,15,18,22,27,34,41,51,62,75,90,109,129,153, %T A370805 185,217,258,307,359,421,493,577,675,788,909,1062,1227,1418,1633,1894, %U A370805 2169,2497,2860,3285,3754,4298,4894,5587,6359,7230,8215,9331,10567,11965 %N A370805 Number of condensed integer partitions of n into parts > 1. %C A370805 These are partitions without ones such that it is possible to choose a different divisor of each part. %e A370805 The a(0) = 1 through a(9) = 6 partitions: %e A370805 () . (2) (3) (4) (5) (6) (7) (8) (9) %e A370805 (2,2) (3,2) (3,3) (4,3) (4,4) (5,4) %e A370805 (4,2) (5,2) (5,3) (6,3) %e A370805 (3,2,2) (6,2) (7,2) %e A370805 (3,3,2) (4,3,2) %e A370805 (4,2,2) (5,2,2) %t A370805 Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]],{n,0,30}] %Y A370805 The version with ones is A239312, complement A370320. %Y A370805 These partitions have as ranks the odd terms of A368110, complement A355740. %Y A370805 The version for prime factors is A370592, complement A370593, post A370807. %Y A370805 The complement without ones is A370804, ranked by the odd terms of A355740. %Y A370805 The version for factorizations is A370814, complement A370813. %Y A370805 A000005 counts divisors. %Y A370805 A000041 counts integer partitions, strict A000009. %Y A370805 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A370805 Cf. A355529, A355739, A367867, A367901, A368110, A368413, A370595, A370806, A370808, A370810. %K A370805 nonn %O A370805 0,5 %A A370805 _Gus Wiseman_, Mar 04 2024 %E A370805 More terms from _Jinyuan Wang_, Feb 14 2025