cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370806 Number of non-strict condensed integer partitions of n.

This page as a plain text file.
%I A370806 #13 Feb 14 2025 11:15:47
%S A370806 0,0,0,0,1,0,1,1,3,2,4,4,8,9,11,14,19,24,29,39,47,58,70,85,104,129,
%T A370806 152,184,223,264,313,374,442,524,617,719,852,993,1159,1344,1579,1817,
%U A370806 2114,2440,2826,3250,3750,4297,4944,5662,6475,7404,8462,9634,10972,12480
%N A370806 Number of non-strict condensed integer partitions of n.
%C A370806 These are non-strict partitions such that it is possible to choose a different divisor of each part.
%e A370806 The a(4) = 1 through a(13) = 9 partitions:
%e A370806   (22)  .  (33)  (322)  (44)   (441)  (55)   (443)   (66)    (544)
%e A370806                         (332)  (522)  (433)  (533)   (444)   (553)
%e A370806                         (422)         (442)  (722)   (552)   (661)
%e A370806                                       (622)  (4322)  (633)   (733)
%e A370806                                                      (822)   (922)
%e A370806                                                      (4332)  (4432)
%e A370806                                                      (4431)  (5332)
%e A370806                                                      (5322)  (5422)
%e A370806                                                              (6322)
%t A370806 Table[Length[Select[IntegerPartitions[n],!UnsameQ@@# && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]],{n,0,30}]
%Y A370806 This is the non-strict case of A239312, complement A370320.
%Y A370806 These partitions have as ranks the nonsquarefree terms of A368110.
%Y A370806 A000005 counts divisors.
%Y A370806 A000041 counts integer partitions, strict A000009.
%Y A370806 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A370806 A370592 counts factor-choosable partitions, complement A370593.
%Y A370806 A370814 counts condensed factorizations, complement A370813.
%Y A370806 Cf. A355739, A355740, A370595, A370804, A370808, A370810.
%K A370806 nonn
%O A370806 0,9
%A A370806 _Gus Wiseman_, Mar 04 2024
%E A370806 More terms from _Jinyuan Wang_, Feb 14 2025