This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370809 #9 Sep 17 2024 12:34:09 %S A370809 1,0,1,1,1,1,2,1,2,2,2,2,3,2,3,3,4,3,4,4,4,4,6,4,6,6,6,6,8,6,8,8,9,8, %T A370809 10,9,12,10,12,12,12,12,16,13,16,16,18,16,20,18,20,20,24,20,24,24,24, %U A370809 26,30,26,30,30,32,32,36,32,36,36,40,38,42,40,45,44,48 %N A370809 Greatest number of multisets that can be obtained by choosing a prime factor of each part of an integer partition of n. %e A370809 For the partition (10,6,3,2) there are 4 choices: {2,2,2,3}, {2,2,3,3}, {2,2,3,5}, {2,3,3,5} so a(21) >= 4. %e A370809 For the partitions of 6 we have the following choices: %e A370809 (6): {{2},{3}} %e A370809 (51): {} %e A370809 (42): {{2,2}} %e A370809 (411): {} %e A370809 (33): {{3,3}} %e A370809 (321): {} %e A370809 (3111): {} %e A370809 (222): {{2,2,2}} %e A370809 (2211): {} %e A370809 (21111): {} %e A370809 (111111): {} %e A370809 So a(6) = 2. %t A370809 Table[Max[Length[Union[Sort /@ Tuples[If[#==1,{},First/@FactorInteger[#]]& /@ #]]]&/@IntegerPartitions[n]],{n,0,30}] %Y A370809 For just all divisors (not just prime factors) we have A370808. %Y A370809 The version for factorizations is A370817, for all divisors A370816. %Y A370809 A000041 counts integer partitions, strict A000009. %Y A370809 A006530 gives greatest prime factor, least A020639. %Y A370809 A027746 lists prime factors, A112798 indices, length A001222. %Y A370809 A355741, A355744, A355745 choose prime factors of prime indices. %Y A370809 A368413 counts non-choosable factorizations, complement A368414. %Y A370809 A370320 counts non-condensed partitions, ranks A355740. %Y A370809 A370592, A370593, A370594, `A370807 count non-choosable partitions. %Y A370809 Cf. A000792, A048249, A063834, A239312, A319055, A339095, A355529, A355733, A367771, A368100, A370585. %K A370809 nonn %O A370809 0,7 %A A370809 _Gus Wiseman_, Mar 05 2024 %E A370809 Terms a(31) onward from _Max Alekseyev_, Sep 17 2024