This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370810 #7 May 24 2024 03:51:10 %S A370810 1,2,6,9,10,22,25,30,34,42,45,62,63,66,75,82,98,99,102,110,118,121, %T A370810 134,147,153,166,170,186,210,218,230,246,254,275,279,289,310,314,315, %U A370810 330,343,354,358,363,369,374,382,390,402,410,422,425,462,482,490,495 %N A370810 Numbers n such that only one set can be obtained by choosing a different divisor of each prime index of n. %C A370810 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A370810 The prime indices of 6591 are {2,6,6,6}, for which the only choice is {1,2,3,6}, so 6591 is in the sequence. %e A370810 The terms together with their prime indices begin: %e A370810 1: {} %e A370810 2: {1} %e A370810 6: {1,2} %e A370810 9: {2,2} %e A370810 10: {1,3} %e A370810 22: {1,5} %e A370810 25: {3,3} %e A370810 30: {1,2,3} %e A370810 34: {1,7} %e A370810 42: {1,2,4} %e A370810 45: {2,2,3} %e A370810 62: {1,11} %e A370810 63: {2,2,4} %e A370810 66: {1,2,5} %e A370810 75: {2,3,3} %e A370810 82: {1,13} %e A370810 98: {1,4,4} %e A370810 99: {2,2,5} %e A370810 102: {1,2,7} %e A370810 110: {1,3,5} %t A370810 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A370810 Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]==1&] %Y A370810 For no choices we have A355740, counted by A370320. %Y A370810 For at least one choice we have A368110, counted by A239312. %Y A370810 Partitions of this type are counted by A370595 and A370815. %Y A370810 For just prime factors we have A370647, counted by A370594. %Y A370810 For more than one choice we have A370811, counted by A370803. %Y A370810 A000005 counts divisors. %Y A370810 A006530 gives greatest prime factor, least A020639. %Y A370810 A027746 lists prime factors, A112798 indices, length A001222. %Y A370810 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A370810 A355741, A355744, A355745 choose prime factors of prime indices. %Y A370810 A370814 counts factorizations with choosable divisors, complement A370813. %Y A370810 Cf. A133686, A355529, A355739, A355749, A367771, A367904, A370584, A370592, A370808, A370816. %K A370810 nonn %O A370810 1,2 %A A370810 _Gus Wiseman_, Mar 05 2024