cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.

This page as a plain text file.
%I A370811 #12 May 24 2024 03:52:43
%S A370811 3,5,7,11,13,14,15,17,19,21,23,26,29,31,33,35,37,38,39,41,43,46,47,49,
%T A370811 51,53,55,57,58,59,61,65,67,69,70,71,73,74,77,78,79,83,85,86,87,89,91,
%U A370811 93,94,95,97,101,103,105,106,107,109,111,113,114,115,117,119
%N A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.
%C A370811 A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.
%e A370811 The prime indices of 70 are {1,3,4}, with choices (1,3,4) and (1,3,2), so 70 is in the sequence.
%e A370811 The terms together with their prime indices begin:
%e A370811      3: {2}      43: {14}        79: {22}       115: {3,9}
%e A370811      5: {3}      46: {1,9}       83: {23}       117: {2,2,6}
%e A370811      7: {4}      47: {15}        85: {3,7}      119: {4,7}
%e A370811     11: {5}      49: {4,4}       86: {1,14}     122: {1,18}
%e A370811     13: {6}      51: {2,7}       87: {2,10}     123: {2,13}
%e A370811     14: {1,4}    53: {16}        89: {24}       127: {31}
%e A370811     15: {2,3}    55: {3,5}       91: {4,6}      129: {2,14}
%e A370811     17: {7}      57: {2,8}       93: {2,11}     130: {1,3,6}
%e A370811     19: {8}      58: {1,10}      94: {1,15}     131: {32}
%e A370811     21: {2,4}    59: {17}        95: {3,8}      133: {4,8}
%e A370811     23: {9}      61: {18}        97: {25}       137: {33}
%e A370811     26: {1,6}    65: {3,6}      101: {26}       138: {1,2,9}
%e A370811     29: {10}     67: {19}       103: {27}       139: {34}
%e A370811     31: {11}     69: {2,9}      105: {2,3,4}    141: {2,15}
%e A370811     33: {2,5}    70: {1,3,4}    106: {1,16}     142: {1,20}
%e A370811     35: {3,4}    71: {20}       107: {28}       143: {5,6}
%e A370811     37: {12}     73: {21}       109: {29}       145: {3,10}
%e A370811     38: {1,8}    74: {1,12}     111: {2,12}     146: {1,21}
%e A370811     39: {2,6}    77: {4,5}      113: {30}       149: {35}
%e A370811     41: {13}     78: {1,2,6}    114: {1,2,8}    151: {36}
%t A370811 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A370811 Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]>1&]
%Y A370811 For no choices we have A355740, counted by A370320.
%Y A370811 For at least one choice we have A368110, counted by A239312.
%Y A370811 Partitions of this type are counted by A370803.
%Y A370811 For a unique choice we have A370810, counted by A370595 and A370815.
%Y A370811 A000005 counts divisors.
%Y A370811 A006530 gives greatest prime factor, least A020639.
%Y A370811 A027746 lists prime factors, A112798 indices, length A001222.
%Y A370811 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A370811 A355741, A355744, A355745 choose prime factors of prime indices.
%Y A370811 A370814 counts factorizations with choosable divisors, complement A370813.
%Y A370811 Cf. A133686, A355529, A355739, A355749, A367771, A367904, A370584, A370592, A370594, A370647, A370808, A370816.
%K A370811 nonn
%O A370811 1,1
%A A370811 _Gus Wiseman_, Mar 13 2024