cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370814 Number of condensed integer factorizations of n into unordered factors > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2024

Keywords

Comments

A multiset is condensed iff it is possible to choose a different divisor of each element.

Examples

			The a(36) = 7 factorizations: (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), (6*6), (36).
		

Crossrefs

Partitions of this type are counted by A239312, ranks A368110.
Factors instead of divisors: A368414, complement A368413, unique A370645.
Partitions not of this type are counted by A370320, ranks A355740.
Subsets of this type: A370582 and A370636, complement A370583 and A370637.
The complement is counted by A370813, partitions A370593, ranks A355529.
For a unique choice we have A370815, partitions A370595, ranks A370810.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min @@ #>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[Select[Tuples[Divisors /@ #],UnsameQ@@#&]]>0&]],{n,100}]