A370815 Number of integer factorizations of n into unordered factors > 1, such that only one set can be obtained by choosing a different divisor of each factor.
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Examples
The a(432) = 3 factorizations: (2*2*3*4*9), (2*3*3*4*6), (2*6*6*6).
Crossrefs
A000005 counts divisors.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,100}]