This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370825 #13 Mar 11 2024 10:15:05 %S A370825 3,2,39,4,363,26,3279,328,29523,1342,11553,292,2391483,1195742, %T A370825 21523359,126608,193710243,728234,1743392199,3169804,15690529803, %U A370825 341098474,3004569537,155181064,1270932914163,635466457082,11438396227479,39442745612,102945566047323,21563796826 %N A370825 a(n) is the numerator of the ratio of winning probabilities in a game similar to A370823, but with a draw and single round odds A:B:draw of 3:2:1. %C A370825 Such a game can be implemented, for instance, by rolling a single die per round, with A winning the round on numbers 1, 2, 3, B winning on 4, 5 and a draw on 6. To win the game it is necessary to win n rounds in a row. The draw also terminates winning streaks of A or B. %H A370825 Paolo Xausa, <a href="/A370825/b370825.txt">Table of n, a(n) for n = 1..2000</a> %F A370825 a(n)/A370826(n) = (3/4) * (3^n - 1) / (2^n - 1). %e A370825 a(n)/A370826(n) for n=1..14: 3/2, 2, 39/14, 4, 363/62, 26/3, 3279/254, 328/17, 29523/1022, 1342/31, 11553/178, 292/3, 2391483/16382, 1195742/5461. %t A370825 Array[Numerator[3/4*(3^#-1)/(2^#-1)] &, 50] (* _Paolo Xausa_, Mar 11 2024 *) %o A370825 (PARI) a370825(n) = numerator((3/4) * (3^n - 1) / (2^n - 1)); %o A370825 (Python) %o A370825 from math import gcd %o A370825 def A370825(n): return (a:=3**(n+1)-3>>1)//gcd(a,(1<<n+1)-2) # _Chai Wah Wu_, Mar 10 2024 %Y A370825 A370826 are the corresponding denominators. %Y A370825 A052548(n+1)/3 is the ratio of winning probabilities when the odds are 2:1:1. %Y A370825 Cf. A370823, A370824 for odds 2:1:0. %K A370825 nonn,frac,easy %O A370825 1,1 %A A370825 _Hugo Pfoertner_, Mar 08 2024