This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370830 #29 Mar 22 2024 17:21:33 %S A370830 2,5,31,43,53,79,83,89,97,109,131,139,151,199,229,233,239,283,313,317, %T A370830 359,367,389,433,443,479,487,569,571,577,601,617,641,643,659,677,769, %U A370830 797,823,853,857,929,937,941,971,1013,1019,1049,1063,1069,1087,1093,1117,1163,1171,1181,1231,1249,1283 %N A370830 Primes p such that the polynomial x^4-x^3-x^2-x-1 is irreducible mod p. %H A370830 Robert Israel, <a href="/A370830/b370830.txt">Table of n, a(n) for n = 1..10000</a> %p A370830 P:= x^4 - x^3 - x^2 - x - 1: %p A370830 select(p -> Irreduc(P) mod p, [seq(ithprime(i),i=1..1000)]); %o A370830 (Python) %o A370830 from itertools import islice %o A370830 from sympy import Poly, nextprime %o A370830 from sympy.abc import x %o A370830 def A370830_gen(): # generator of terms %o A370830 p = 2 %o A370830 while True: %o A370830 if Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=p).is_irreducible: %o A370830 yield p %o A370830 p = nextprime(p) %o A370830 A370830_list = list(islice(A370830_gen(),20)) # _Chai Wah Wu_, Mar 14 2024 %Y A370830 Subsequence of A106283. Cf. 106309. %K A370830 nonn %O A370830 1,1 %A A370830 _Robert Israel_, Mar 13 2024