This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370835 #9 Mar 04 2024 01:36:43 %S A370835 1,2,2,3,2,2,3,5,2,3,3,2,7,3,2,5,3,3,3,5,2,3,11,3,3,5,2,3,13,7,3,7,5, %T A370835 5,3,3,5,2,17,5,3,7,3,3,19,3,3,5,2,7,5,5,3,11,7,3,23,3,11,3,5,5,2,7,5, %U A370835 3,13,7,3,5,3,11,7,3,29,5,5,3,7,13,31,5,3,5 %N A370835 a(n) is the greatest prime dividing the n-th cubefull number, for n >= 2; a(1)=1. %H A370835 Amiram Eldar, <a href="/A370835/b370835.txt">Table of n, a(n) for n = 1..10000</a> %H A370835 Jean-Marie De Koninck and Rafael Jakimczuk, <a href="https://doi.org/10.33044/revuma.3154">Summing the largest prime factor over integer sequences</a>, Revista de la Unión Matemática Argentina, Vol. 67, No. 1 (2024), pp. 27-35. %F A370835 a(n) = A006530(A036966(n)). %F A370835 Sum_{A036966(n) <= x} a(n) = Sum_{i=1..k} e_i * x^(2/3)/log(x)^i + O(x^(2/3)/log(x)^(k+1)), for any given positive integer k, where e_i are constants, e_1 = (3/2) * Product_{p prime} (1 + Sum_{i>=3} 1/p^(2*i/3)) = 3.44968588450293915243... (De Koninck and Jakimczuk, 2024). %t A370835 s[n_] := Module[{f = FactorInteger[n]}, If[n == 1 || AllTrue[f[[;; , 2]], # > 2 &], f[[-1, 1]], Nothing]]; Array[s, 32000] %o A370835 (PARI) lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 2, print1(f[#f~, 1], ", ")));} %Y A370835 Cf. A036966, A006530, A073482, A082695, A370833, A370834. %K A370835 nonn,easy %O A370835 1,2 %A A370835 _Amiram Eldar_, Mar 03 2024