This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370882 #37 Mar 18 2024 11:46:20 %S A370882 9,8,18,7,17,36,6,16,35,72,5,15,34,71,144,4,14,33,70,143,288,3,13,32, %T A370882 69,142,287,576,2,12,31,68,141,286,575,1152,1,11,30,67,140,285,574, %U A370882 1151,2304,0,10,29,66,139,284,573,1150,2303,4608,-1,9,28,65,138,283,572,1149,2302,4607,9216 %N A370882 Square array T(n,k) = 9*2^k - n read by ascending antidiagonals. %C A370882 Just after A367559 and A368826. %F A370882 T(0,k) = 9*2^k = A005010(k); %F A370882 T(1,k) = 9*2^k - 1 = A052996(k+2); %F A370882 T(2,k) = 9*2^k - 2 = A176449(k); %F A370882 T(3,k) = 9*2^k - 3 = 3*A083329(k); %F A370882 T(4,k) = 9*2^k - 4 = A053209(k); %F A370882 T(5,k) = 9*2^k - 5 = A304383(k+3); %F A370882 T(6,k) = 9*2^k - 6 = 3*A033484(k); %F A370882 T(7,k) = 9*2^k - 7 = A154251(k+1); %F A370882 T(8,k) = 9*2^k - 8 = A048491(k); %F A370882 T(9,k) = 9*2^k - 9 = 3*A000225(k). %F A370882 G.f.: (9 - 9*y + x*(11*y - 10))/((1 - x)^2*(1 - y)*(1 - 2*y)). - _Stefano Spezia_, Mar 17 2024 %e A370882 Table begins: %e A370882 k=0 1 2 3 4 5 %e A370882 n=0: 9 18 36 72 144 288 ... %e A370882 n=1: 8 17 35 71 143 287 ... %e A370882 n=2: 7 16 34 70 142 286 ... %e A370882 n=3: 6 15 33 69 141 285 ... %e A370882 n=4: 5 14 32 68 140 284 ... %e A370882 n=5: 4 13 31 67 139 283 ... %e A370882 Every line has the signature (3,-2). For n=1: 3*17 - 2*8 = 35. %e A370882 Main diagonal's difference table: %e A370882 9 17 34 69 140 283 570 1145 ... = b(n) %e A370882 8 17 35 71 143 287 575 1151 ... = A052996(n+2) %e A370882 9 18 36 72 144 288 576 1152 ... = A005010(n) %e A370882 ... %e A370882 b(n+1) - 2*b(n) = A023443(n). %t A370882 T[n_, k_] := 9*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Mar 06 2024 *) %Y A370882 Cf. A000225, A033484, A048491, A005010, A052996, A053209, A083329, A154251, A176449, A304383, A367559, A368826. %Y A370882 Cf. A023443. %K A370882 sign,tabl %O A370882 0,1 %A A370882 _Paul Curtz_, Mar 05 2024