A370885 Irregular triangle read by rows: T(n,k) is the total number of unmatched parentheses (both left and right) in the k-th string of parentheses of length n, where strings within a row are in reverse lexicographical order.
0, 1, 1, 2, 2, 0, 2, 3, 3, 1, 3, 1, 1, 1, 3, 4, 4, 2, 4, 2, 2, 2, 4, 2, 2, 0, 2, 0, 2, 2, 4, 5, 5, 3, 5, 3, 3, 3, 5, 3, 3, 1, 3, 1, 3, 3, 5, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 3, 5, 6, 6, 4, 6, 4, 4, 4, 6, 4, 4, 2, 4, 2, 4, 4, 6, 4, 4, 2, 4, 2, 2, 2, 4, 2
Offset: 0
Examples
Triangle begins: [0] 0; [1] 1 1; [2] 2 2 0 2; [3] 3 3 1 3 1 1 1 3; [4] 4 4 2 4 2 2 2 4 2 2 0 2 0 2 2 4; ...
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, p. 459.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..16382 (rows 0..13 of the triangle, flattened).
Crossrefs
Programs
-
Mathematica
countLR[s_] := StringLength[s] - StringLength[StringJoin[StringCases[s, RegularExpression["1(?R)*+0"]]]]; Array[Map[countLR, IntegerString[Range[0, 2^#-1], 2, #]] &, 7, 0]
Comments