This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370887 #35 Mar 29 2024 05:43:01 %S A370887 1,1,2,1,2,5,1,2,6,16,1,2,8,28,67,1,2,10,64,212,374,1,2,14,116,1120, %T A370887 2664,2825,1,2,16,268,3652,42176,56632,29212,1,2,20,368,19156,285704, %U A370887 3583232,2052656,417199,1,2,22,616,35872,3961832,61946920,666124288 %N A370887 Square array read by descending antidiagonals: T(n,k) is the number of subgroups of the elementary abelian group of order A000040(k)^n for n >= 0 and k >= 1. %C A370887 As an elementary abelian group G of order p^n is isomorphic to an n-dimensional vector space V over the finite field of characteristic p, T(n,k) is also the number of subspaces of V. %C A370887 V defined as above, T(n,k) is also the sum of the Gaussian binomial coefficients (n,r), 0 <= r < n, for a prime q number, since (n,r) counts the number of r-dimensional subspaces of V. The sequences of these sums for a fixed prime q number correspond to the columns of T(n,k). %F A370887 T(n,k) = 2*T(n-1,k) + (A000040(k)^(n-1)-1)*T(n-2,k). %F A370887 T(0,k) = 1. %F A370887 T(1,k) = 2. %F A370887 T(2,k) = A000040(k) + 3 = A113935(k). %F A370887 T(3,k) = 2*(A000040(k)^3 + (A000040(k)-2))/(A000040(k)-1). %e A370887 T(1,1) = 2 since the elementary abelian of order A000040(1)^1 = 2^1 has 2 subgroups. %e A370887 T(3,5) = 2*T(2,5) + (A000040(5)^(3-1)-1)*T(1,5) = 2*14 + ((11^2)-1)*2 = 268. %e A370887 First 6 rows and 8 columns: %e A370887 n\k| 1 2 3 4 5 6 7 8 %e A370887 ----+--------------------------------------------------------------------------- %e A370887 0 | 1 1 1 1 1 1 1 1 %e A370887 1 | 2 2 2 2 2 2 2 2 %e A370887 2 | 5 6 8 10 14 16 20 22 %e A370887 3 | 16 28 64 116 268 368 616 764 %e A370887 4 | 67 212 1120 3652 19156 35872 99472 152404 %e A370887 5 | 374 2664 42176 285704 3961832 10581824 51647264 99869288 %e A370887 6 |2825 56632 3583232 61946920 3092997464 13340150272 141339210560 377566978168 %o A370887 (PARI) T(n,k)=polcoeff(sum(i=0,n,x^i/prod(j=0,i,1-primes(k)[k]^j*x+x*O(x^n))),n) %o A370887 (GAP) %o A370887 # produces an array A of the first (7(7+1))/2 terms. However computation quickly becomes expensive for values > 7. %o A370887 LoadPackage("sonata"); # sonata package needs to be loaded to call function Subgroups. Sonata is included in latest versions of GAP. %o A370887 N:=[1..7];; R:=[];; S:=[];; %o A370887 for i in N do %o A370887 for j in N do %o A370887 if j>i then %o A370887 break; %o A370887 fi; %o A370887 Add(R,j); %o A370887 od; %o A370887 Add(S,R); %o A370887 R:=[];; %o A370887 od; %o A370887 A:=[];; %o A370887 for n in N do %o A370887 L:=List([1..Length(S[n])],m->Size(Subgroups(ElementaryAbelianGroup( Primes[Reversed(S[n])[m]]^(S[n][m]-1))))); %o A370887 Add(A,L); %o A370887 od; %o A370887 A:=Flat(A); %Y A370887 Cf. A000040, A113935, A006116, A006117, A006119, A006121, A015197. %K A370887 nonn,tabl %O A370887 0,3 %A A370887 _Miles Englezou_, Mar 05 2024