This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370890 #11 Mar 06 2024 07:59:35 %S A370890 1,0,1,0,1,1,0,2,2,1,0,6,4,3,1,0,12,16,6,4,1,0,60,32,30,8,5,1,0,120, %T A370890 192,60,48,10,6,1,0,840,384,420,96,70,12,7,1,0,1680,3072,840,768,140, %U A370890 96,14,8,1,0,15120,6144,7560,1536,1260,192,126,16,9,1 %N A370890 A(n, k) = 2^n*Pochhammer(k/2, floor((n+1)/2)). Square array read by ascending antidiagonals. %H A370890 Paolo Xausa, <a href="/A370890/b370890.txt">Table of n, a(n) for n = 0..11324</a> (first 150 antidiagonals, flattened). %e A370890 The array starts: %e A370890 [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A370890 [1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... %e A370890 [2] 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ... %e A370890 [3] 0, 6, 16, 30, 48, 70, 96, 126, 160, 198, ... %e A370890 [4] 0, 12, 32, 60, 96, 140, 192, 252, 320, 396, ... %e A370890 [5] 0, 60, 192, 420, 768, 1260, 1920, 2772, 3840, 5148, ... %e A370890 . %e A370890 Seen as the triangle T(n, k) = A(n - k, k): %e A370890 [0] 1; %e A370890 [1] 0, 1; %e A370890 [2] 0, 1, 1; %e A370890 [3] 0, 2, 2, 1; %e A370890 [4] 0, 6, 4, 3, 1; %e A370890 [5] 0, 12, 16, 6, 4, 1; %e A370890 [6] 0, 60, 32, 30, 8, 5, 1; %e A370890 [7] 0, 120, 192, 60, 48, 10, 6, 1; %p A370890 A := (n, k) -> 2^n*pochhammer(k/2, iquo(n+1,2)): %p A370890 for n from 0 to 5 do seq(A(n, k), k = 0..9) od; %p A370890 T := (n, k) -> A(n - k, k): %p A370890 seq(seq(T(n, k), k = 0..n), n = 0..10); %t A370890 A370890[n_, k_] := 2^n*Pochhammer[k/2, Floor[(n+1)/2]]; %t A370890 Table[A370890[n-k, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Mar 06 2024 *) %o A370890 (SageMath) # Note the use of different kinds of division. %o A370890 def A(n, k): return 2**n * rising_factorial(k/2, (n+1)//2) %o A370890 for n in range(0, 9): print([A(n, k) for k in range(0, 9)]) %Y A370890 Rows: A000012, A001477, A005843, A054000, A134582. %Y A370890 Columns: A000007, A081125, A355989. %Y A370890 Cf. A370419. %K A370890 nonn,tabl %O A370890 0,8 %A A370890 _Peter Luschny_, Mar 04 2024