cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370895 Partial alternating sums of Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, -2, 3, -5, 4, -11, 2, -18, 3, -24, -3, -43, -18, -57, -12, -60, -27, -90, -53, -125, -60, -123, -78, -178, -113, -188, -107, -211, -154, -289, -228, -340, -235, -334, -217, -385, -312, -423, -298, -478, -397, -592, -507, -675, -486, -621, -528, -768, -635, -830
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; pil[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[(-1)^(#+1) * pil[#] &, 100]]
  • PARI
    pil(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i, 2]*(f[i, 1]-1)/f[i, 1] + 1)*f[i, 1]^f[i, 2]);}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * pil(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A018804(k).
a(n) = -(1/Pi^2) * n^2 * (log(n) + 2*gamma - 1/2 - zeta'(2)/zeta(2) - 10*log(2)/3) + O(n^(547/416 + eps)), where gamma is Euler's constant (A001620) (Tóth, 2017).