cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370897 Partial alternating sums of the number of abelian groups sequence (A000688).

This page as a plain text file.
%I A370897 #8 Mar 05 2024 11:52:05
%S A370897 1,0,1,-1,0,-1,0,-3,-1,-2,-1,-3,-2,-3,-2,-7,-6,-8,-7,-9,-8,-9,-8,-11,
%T A370897 -9,-10,-7,-9,-8,-9,-8,-15,-14,-15,-14,-18,-17,-18,-17,-20,-19,-20,
%U A370897 -19,-21,-19,-20,-19,-24,-22,-24,-23,-25,-24,-27,-26,-29,-28,-29,-28
%N A370897 Partial alternating sums of the number of abelian groups sequence (A000688).
%H A370897 Amiram Eldar, <a href="/A370897/b370897.txt">Table of n, a(n) for n = 1..10000</a>
%H A370897 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A370897 a(n) = Sum_{k=1..n} (-1)^(k+1) * A000688(k).
%F A370897 a(n) = k_1 * A021002 * n + k_2 * A084892 * n^(1/2) + k_3 * A084893 * n^(1/3) + O(n^(1/4 + eps)), where eps > 0 is arbitrarily small, k_j = -1 + 2 * Product_{i>=1} (1 - 1/2^(i/j)), k_1 = 2*A048651 - 1 = -0.422423809826..., k_2 = -0.924973966404..., and k_3 = -0.991478298912... (Tóth, 2017).
%t A370897 f[n_] := Times @@ (PartitionsP[Last[#]] & /@ FactorInteger[n]); f[1] = 1; Accumulate[Array[(-1)^(#+1) * f[#] &, 100]]
%o A370897 (PARI) f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
%o A370897 lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * f(k); print1(s, ", "))};
%Y A370897 Cf. A000688, A063966.
%Y A370897 Cf. A021002, A048651, A084892, A084893.
%Y A370897 Similar sequences: A068762, A068773, A307704, A357817, A362028.
%K A370897 sign,easy
%O A370897 1,8
%A A370897 _Amiram Eldar_, Mar 05 2024