cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370900 Partial sums of the powerfree part function (A055231).

Original entry on oeis.org

1, 3, 6, 7, 12, 18, 25, 26, 27, 37, 48, 51, 64, 78, 93, 94, 111, 113, 132, 137, 158, 180, 203, 206, 207, 233, 234, 241, 270, 300, 331, 332, 365, 399, 434, 435, 472, 510, 549, 554, 595, 637, 680, 691, 696, 742, 789, 792, 793, 795, 846, 859, 912, 914, 969, 976, 1033
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 52.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, p, 1]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, f[i, 1], 1));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += pfp(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} A055231(k).
a(n) = c * n^2 / 2 + O(R(n)), where c = Product_{p prime} (1 - (p^2+p-1)/(p^3*(p+1))) = 0.649606699337... (A191622), R(n) = x^(3/2) * exp(-c_1 * log(n)^(3/5) / log(log(n))^(1/5)) unconditionally, or x^(7/5) * exp(c_2 * log(n) / log(log(n))) assuming the Riemann hypothesis, and c_1 and c_2 are positive constants (Tóth, 2017).