cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370905 Partial sums of the alternating sum of divisors function (A206369).

This page as a plain text file.
%I A370905 #15 May 11 2024 09:40:48
%S A370905 1,2,4,7,11,13,19,24,31,35,45,51,63,69,77,88,104,111,129,141,153,163,
%T A370905 185,195,216,228,248,266,294,302,332,353,373,389,413,434,470,488,512,
%U A370905 532,572,584,626,656,684,706,752,774,817,838,870,906,958,978,1018,1048
%N A370905 Partial sums of the alternating sum of divisors function (A206369).
%H A370905 Amiram Eldar, <a href="/A370905/b370905.txt">Table of n, a(n) for n = 1..10000</a>
%H A370905 László Tóth, <a href="https://doi.org/10.2478/ausm-2014-0007">A survey of the alternating sum-of-divisors function</a>, Acta Universitatis Sapientiae, Mathematica, Vol. 5, No. 1 (2013), pp. 93-107.
%H A370905 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A370905 a(n) = Sum_{k=1..n} A206369(k).
%F A370905 a(n) = (Pi^2/30) * n^2 + O(n * log(n)^(2/3) * log(log(n))^(4/3)) (Tóth, 2013).
%F A370905 a(n) = (1/2) * Sum_{k=1..n} A008836(k) * floor(n/k) * floor(n/k + 1). - _Daniel Suteu_, May 11 2024
%t A370905 f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[beta[#] &, 100]]
%o A370905 (PARI) beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k));}
%o A370905 lista(kmax) = {my(s = 0); for(k = 1, kmax, s += beta(k); print1(s, ", "))};
%o A370905 (PARI) a(n) = sum(k=1, n, (-1)^bigomega(k) * (n\k) * (n\k+1))/2; \\ _Daniel Suteu_, May 11 2024
%o A370905 (Python)
%o A370905 from math import prod
%o A370905 from sympy import factorint
%o A370905 def A370905(n): return sum(prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(k).items()) for k in range(1,n+1)) # _Chai Wah Wu_, Mar 05 2024
%Y A370905 Cf. A206369, A370906.
%K A370905 nonn,easy
%O A370905 1,2
%A A370905 _Amiram Eldar_, Mar 05 2024