cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370908 Expansion of e.g.f. (1/x) * Series_Reversion( 4*x/(3 + exp(4*x)) ).

This page as a plain text file.
%I A370908 #11 Nov 07 2024 15:41:51
%S A370908 1,1,6,58,824,15576,368560,10494352,349680000,13354956160,
%T A370908 575343613184,27606884967168,1460295317318656,84429863673895936,
%U A370908 5297505756426098688,358520710389920598016,26033795963713021116416,2019060825791610516504576
%N A370908 Expansion of e.g.f. (1/x) * Series_Reversion( 4*x/(3 + exp(4*x)) ).
%H A370908 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A370908 a(n) = 1/(4*(n+1)) * Sum_{k=0..n+1} 3^(n+1-k) * k^n * binomial(n+1,k).
%F A370908 a(n) = n! * Sum_{k=0..n} 4^(n-k) * Stirling2(n,k)/(n-k+1)!. - _Seiichi Manyama_, Nov 07 2024
%o A370908 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(4*x/(3+exp(4*x)))/x))
%o A370908 (PARI) a(n) = sum(k=0, n+1, 3^(n+1-k)*k^n*binomial(n+1, k))/(4*(n+1));
%Y A370908 Cf. A201595, A370907.
%K A370908 nonn
%O A370908 0,3
%A A370908 _Seiichi Manyama_, Mar 05 2024