This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370910 #11 Nov 07 2024 15:41:58 %S A370910 1,3,30,534,13944,483528,20979696,1095048048,66870491520, %T A370910 4679735191680,369376085620992,32469964691563776,3146279097351097344, %U A370910 333211862918094763008,38295176235674130905088,4746999846951047891417088,631337582065248312276910080 %N A370910 Expansion of e.g.f. (1/x) * Series_Reversion( 4*x/(1 + 3*exp(4*x)) ). %H A370910 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A370910 a(n) = 1/(4*(n+1)) * Sum_{k=0..n+1} 3^k * k^n * binomial(n+1,k). %F A370910 a(n) = n! * Sum_{k=0..n} 3^k * 4^(n-k) * Stirling2(n,k)/(n-k+1)!. - _Seiichi Manyama_, Nov 07 2024 %o A370910 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(4*x/(1+3*exp(4*x)))/x)) %o A370910 (PARI) a(n) = sum(k=0, n+1, 3^k*k^n*binomial(n+1, k))/(4*(n+1)); %Y A370910 Cf. A201595, A370909. %K A370910 nonn %O A370910 0,2 %A A370910 _Seiichi Manyama_, Mar 05 2024