This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370923 #7 Mar 22 2024 17:39:29 %S A370923 2,4,3,6,9,5,8,10,14,7,12,15,25,22,11,16,20,28,39,26,13,18,21,33,44, %T A370923 51,34,17,24,27,35,49,52,57,38,19,30,40,55,77,95,68,69,46,23,32,42,56, %U A370923 78,102,114,76,87,58,29,36,45,65,85,104,115,138,92,93,62 %N A370923 Rectangular array read by antidiagonals: row n shows the numbers m >=2 such that the maximum number of consecutive 0's in (e(1), e(2), ..., e(k)) is n-1, where p(1)^e(1) * p(2)^e(2) * ... * p(k)^e(k) is the prime factorization of m. %C A370923 Every positive integer >1 occurs exactly once. %e A370923 Corner: %e A370923 2 4 6 8 12 16 18 24 30 %e A370923 3 9 10 15 20 21 27 40 42 %e A370923 5 14 25 28 33 35 55 56 65 %e A370923 7 22 39 44 49 77 78 85 88 %e A370923 11 26 51 52 95 102 104 121 143 %e A370923 13 34 57 68 114 115 136 169 171 %e A370923 17 38 69 76 138 145 152 207 217 %e A370923 19 46 87 92 155 174 184 259 261 %e A370923 23 58 93 116 185 186 232 279 287 %e A370923 29 62 111 124 205 222 248 301 333 %e A370923 31 74 123 148 215 246 296 329 369 %e A370923 37 82 129 164 235 258 328 371 387 %e A370923 22 = 2^1 * 3^0 * 5^0 * 7^0 * (11)^1, so (e(1),e(2),e(3),e(4),e(5)) = (1,0,0,0,1), so 22 is in row 4. %t A370923 Map[Transpose[#][[1]] &, GatherBy[Map[{#, Max[Map[Length, DeleteCases[ %t A370923 Split[Map[IntegerQ, #/Prime[Range[PrimePi[FactorInteger[#][[-1, 1]]]]]] &[#]], {___, True, ___}]] /. {} -> {0}]} &, Range[2, 400]], #[[2]] &]] // ColumnForm %t A370923 (* _Peter J. C. Moses_, Mar 17 2024 *) %Y A370923 Cf. A000040 (the primes, column 1), A002808 (union of all columns except the first), A055932 (row 1). %K A370923 nonn,tabl %O A370923 1,1 %A A370923 _Clark Kimberling_, Mar 18 2024