A370932 For any number n >= 0 with ternary expansion Sum_{i >= 0} t_i * 3^i, a(n) = Sum_{i >= 0} ((Sum_{j >= 0} (-1)^j * t_{i+j}) mod 3) * 3^i.
0, 1, 2, 5, 3, 4, 7, 8, 6, 16, 17, 15, 9, 10, 11, 14, 12, 13, 23, 21, 22, 25, 26, 24, 18, 19, 20, 50, 48, 49, 52, 53, 51, 45, 46, 47, 27, 28, 29, 32, 30, 31, 34, 35, 33, 43, 44, 42, 36, 37, 38, 41, 39, 40, 70, 71, 69, 63, 64, 65, 68, 66, 67, 77, 75, 76, 79, 80
Offset: 0
Examples
For n = 42: the ternary expansion of 42 is "1120"; also: + 1 = 1 (mod 3) - 1 + 1 = 0 (mod 3) + 1 - 1 + 2 = 2 (mod 3) - 1 + 1 - 2 + 0 = 1 (mod 3) - so the ternary expansion of a(42) is "1021", and a(42) = 34.
Links
Programs
-
PARI
a(n, base = 3) = { my (d = digits(n, base), s = 0); for (i = 1, #d, d[i] = (s = d[i]-s) % base;); fromdigits(d, base); }
-
Python
from itertools import accumulate from sympy.ntheory import digits def A370932(n): t = accumulate(((-j if i&1 else j) for i, j in enumerate(digits(n,3)[1:])),func=lambda x,y: (x+y)%3) return int(''.join(str(-d%3 if i&1 else d) for i,d in enumerate(t)),3) # Chai Wah Wu, Mar 08 2024
Comments