This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370950 #42 Mar 15 2025 11:54:44 %S A370950 1,0,0,0,2,1,1,10,30,20,23,0,160,419,740,0,5116,47677 %N A370950 Number of penholodigital squares (containing each nonzero digit exactly once) in base n. %C A370950 From _Chai Wah Wu_, Mar 10 2024: (Start) %C A370950 Theorem: Let m^2 be a pandigital square (containing each digit exactly once) or a penholodigital square (containing each nonzero digit exactly once) in base n. If n-1 is an odd squarefree number (A056911), then m is divisible by n-1. If n-1 is an even squarefree number (A039956), then m-(n-1)/2 is divisible by n-1. %C A370950 Proof: Since n^k == 1 (mod n-1), and the sum of digits of m^2 is n*(n-1)/2, this implies that m^2 == n*(n-1)/2 (mod n-1). If n-1 is odd and squarefree, then n is even and m^2 == 0 (mod n-1). Since n-1 = Product_i p_i for distinct odd primes p_i, and m^2 == 0 (mod p_i) if and only if m == 0 (mod p_i), this implies that m == 0 (mod n-1) by the Chinese Remainder Theorem. %C A370950 Similarly, if n-1 is even and squarefree, then m^2 == n(n-1)/2 == (n-1)/2 (mod n-1) and (n-1)/2 = Product_i p_i for distinct odd primes p_i, i.e., m^2 == 0 (mod p_i) and m^2 == 1 (mod 2). This implies that m == 0 (mod p_i) and m == 1 (mod 2). Again by the Chinese Remainder Theorem, m == (n-1)/2 (mod n-1). %C A370950 (End) %H A370950 Chai Wah Wu, <a href="https://arxiv.org/abs/2403.20304">Pandigital and penholodigital numbers</a>, arXiv:2403.20304 [math.GM], 2024. See p. 2. %F A370950 If n is odd and n-1 has an even 2-adic valuation, then a(n) = 0 (see A258103). %e A370950 For n=2 there is one penholodigital square, 1_2 = 1 = 1^2. %e A370950 For n=6 there are two penholodigital squares, 15324_6 = 2500 = 50^2 and 53241_6 = 7225 = 85^2. %e A370950 For n=7 there is one penholodigital square, 623514_7 = 106929 = 327^2. %e A370950 For n=8 there is one penholodigital square, 6532471_8 = 1750329 = 1323^2. %e A370950 For n=10 there are 30 penholodigital squares listed in A036744. %o A370950 (Python) %o A370950 from gmpy2 import mpz, digits, isqrt %o A370950 def A370950(n): # requires 2 <= n <= 62 %o A370950 if n&1 and (~(m:=n-1>>1) & m-1).bit_length()&1: %o A370950 return 0 %o A370950 t = ''.join(digits(d,n) for d in range(1,n)) %o A370950 k = mpz(''.join(digits(d,n) for d in range(n-1,0,-1)),n) %o A370950 k2 = mpz(t,n) %o A370950 c = 0 %o A370950 for i in range(isqrt(k2),isqrt(k)+1): %o A370950 if i%n: %o A370950 j = i**2 %o A370950 s = ''.join(sorted(digits(j,n))) %o A370950 if s == t: %o A370950 c += 1 %o A370950 return c %Y A370950 Cf. A039956, A056911, A036744, A071519, A258103. %K A370950 nonn,base,more %O A370950 2,5 %A A370950 _Chai Wah Wu_, Mar 06 2024 %E A370950 a(18) from _Chai Wah Wu_, Mar 07 2024 %E A370950 a(19) from _Chai Wah Wu_, Mar 15 2025