cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370951 First differences of A112877 (zero terms in Cald's sequence A006509).

Original entry on oeis.org

82, 182, 46, 94, 200, 430, 846, 1628, 2982, 5662, 10940, 17924, 34308, 65768, 125760, 240732, 460672, 883598, 1697502, 3268008, 6297778, 12152690, 23482980, 45422208, 87949242, 170465380, 330760622, 642315104, 1094147916, 2132023868, 4153355532, 8093060816, 15777058876
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2024

Keywords

Comments

The terms essentially double at each step. The ratios of successive terms are 2.219512195, 0.2527472527, 2.043478261, 2.127659574, 2.150000000, 1.967441860, 1.924349882, 1.831695332, 1.898725687, 1.932179442, 1.638391225, 1.914081678, 1.916987292, 1.912176134, 1.914217557, 1.913630095, 1.918063177, 1.921124765, 1.925186539, 1.927099934, 1.929679007, 1.932327740, 1.934260814, 1.936260826, 1.938224550, 1.940338983, 1.941933414, 1.703444165, 1.948570058, 1.948081161, 1.948559605, 1.949455124...

Crossrefs

Programs

  • Mathematica
    nn = 2^20; c[_] := False; a[1] = j = 1; c[1] = True;
    Differences@ Monitor[Reap[
        Do[p = Prime[n - 1];
         If[And[# > 0, ! c[#]], k = #,
            If[c[#], k = 0; Sow[n], k = #] &[j + p]] &[j - p];
    Set[{c[k], j}, {True, k}], {n, 2, nn}]][[-1, 1]], n] (* Michael De Vlieger, Mar 07 2024 *)
  • Python
    from itertools import count, islice
    from sympy import nextprime
    def A370951_gen(): # generator of terms
        a, aset, p, q = 1, {1}, 2, 0
        for c in count(2):
            if (b:=a-p) > 0 and b not in aset:
                a = b
            elif (b:=a+p) not in aset:
                a = b
            else:
                a = 0
                if q:
                    yield c-q
                q = c
            aset.add(a)
            p = nextprime(p)
    A370951_list = list(islice(A370951_gen(),10)) # Chai Wah Wu, Mar 07 2024

Extensions

a(29)-a(33) from Martin Ehrenstein, Mar 07 2024