cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370953 Numerators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.

This page as a plain text file.
%I A370953 #26 May 02 2024 17:05:39
%S A370953 1,1,4,77,1009,101627,1302779,2513121979,11291682179,1354947005798,
%T A370953 23064317580681848,20189102649892270054,776220757551441546419,
%U A370953 641273428219629914673014,5433381672262390009892530636,1399751922597075578762073697769
%N A370953 Numerators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.
%H A370953 Hendrik A. Kramers and Gregory H. Wannier. <a href="https://doi.org/10.1103/PhysRev.60.252">Statistics of the two-dimensional ferromagnet. Part I</a>. Phys. Rev. 60 (1941), 252-262.
%H A370953 Hendrik A. Kramers and Gregory H. Wannier. <a href="https://doi.org/10.1103/PhysRev.60.263">Statistics of the two-dimensional ferromagnet. Part II</a>. Phys. Rev. 60 (1941), 263-276. See (41), p. 263.
%H A370953 Hendrik A. Kramers and Gregory H. Wannier, <a href="/A370953/a370953.pdf">Extract from page 263 of Part II.</a>
%H A370953 Gandhimohan M. Viswanathan, <a href="https://doi.org/10.1088/1742-5468/2015/07/P07004">The hypergeometric series for the partition function of the 2D Ising model</a>, J. Stat. Mech. (2015) P07004; arXiv:<a href="https://arxiv.org/abs/1411.2495">1411.2495</a> [cond-mat.stat-mech], 2014-2015.
%H A370953 Wikipedia, <a href="https://en.wikipedia.org/wiki/Square_lattice_Ising_model">Square lattice Ising model</a>.
%F A370953 a(n) / A370954(n) ~ c * 2^(2*n) / (n^3 * log(1 + sqrt(2))^(2*n)), where c = 0.15662885... - _Vaclav Kotesovec_, May 02 2024
%t A370953 CoefficientList[With[{nmax = 7}, Exp[-Log[2]/2 + 1/(2 Pi) Integrate[Log[Cosh[2k]^2 + Sqrt[Sinh[2k]^4 + 1 - 2 Sinh[2k]^2 Cos[2\[Theta]] + O[k]^(2nmax+1)]], {\[Theta], 0, Pi}] + O[k]^(2nmax+1)]], k][[;; ;; 2]] // Numerator (* _Andrey Zabolotskiy_, Mar 10 2024 *)
%t A370953 CoefficientList[Cosh[2k] Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16x] /. {x -> (Sinh[2k]/(2Cosh[2k]^2))^2}] + O[k]^32, k][[;; ;; 2]] // Numerator (* _Andrey Zabolotskiy_, Mar 13 2024, using the g. f. from Gandhimohan M. Viswanathan *)
%Y A370953 See A370954 for denominators.
%Y A370953 Cf. A370955, A002908, A002890.
%K A370953 nonn,frac
%O A370953 0,3
%A A370953 _N. J. A. Sloane_, Mar 10 2024
%E A370953 Terms a(5) and beyond from _Andrey Zabolotskiy_, Mar 10 2024