cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370970 Numbers k which have a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together give 0,1,...,9 exactly once.

This page as a plain text file.
%I A370970 #17 Jul 09 2025 05:03:52
%S A370970 8596,8790,9360,9380,9870,10752,12780,14760,14820,15628,15678,16038,
%T A370970 16704,17082,17820,17920,18720,19084,19240,20457,20574,20754,21658,
%U A370970 24056,24507,25803,26180,26910,27504,28156,28651,30296,30576,30752,31920,32760,32890,34902,36508,47320,58401,65128,65821
%N A370970 Numbers k which have a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together give 0,1,...,9 exactly once.
%C A370970 The total number of digits in k, f1, ..., fr is ten, and they are all distinct.
%H A370970 Hans Havermann, <a href="https://gladhoboexpress.blogspot.com/2024/04/pandigital-products.html">Pandigital Products</a>, Apr 13 2024
%e A370970 The complete list of terms:
%e A370970  8596 = 2*14*307
%e A370970  8790 = 2*3*1465
%e A370970  9360 = 2*4*15*78
%e A370970  9380 = 2*5*14*67
%e A370970  9870 = 2*3*1645
%e A370970 10752 = 3*4*896
%e A370970 12780 = 4*5*639
%e A370970 14760 = 5*9*328
%e A370970 14820 = 5*39*76
%e A370970 15628 = 4*3907
%e A370970 15678 = 39*402
%e A370970 16038 = 27*594 = 54*297
%e A370970 16704 = 9*32*58
%e A370970 17082 = 3*5694
%e A370970 17820 = 36*495 = 45*396
%e A370970 17920 = 8*35*64
%e A370970 18720 = 4*5*936
%e A370970 19084 = 52*367
%e A370970 19240 = 8*37*65
%e A370970 20457 = 3*6819
%e A370970 20574 = 6*9*381
%e A370970 20754 = 3*6918
%e A370970 21658 = 7*3094
%e A370970 24056 = 8*31*97
%e A370970 24507 = 3*8169
%e A370970 25803 = 9*47*61
%e A370970 26180 = 4*7*935
%e A370970 26910 = 78*345
%e A370970 27504 = 3*9168
%e A370970 28156 = 4*7039
%e A370970 28651 = 7*4093
%e A370970 30296 = 7*8*541
%e A370970 30576 = 8*42*91
%e A370970 30752 = 4*8*961
%e A370970 31920 = 5*76*84
%e A370970 32760 = 8*45*91
%e A370970 32890 = 46*715
%e A370970 34902 = 6*5817
%e A370970 36508 = 4*9127
%e A370970 47320 = 8*65*91
%e A370970 58401 = 63*927
%e A370970 65128 = 7*9304
%e A370970 65821 = 7*9403
%Y A370970 Cf. A370972, A372106.
%K A370970 nonn,base,fini,full
%O A370970 1,1
%A A370970 _N. J. A. Sloane_, Apr 13 2024, following emails from _Ed Pegg Jr_ and _Hans Havermann_. The terms were computed by _Hans Havermann_