This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370970 #17 Jul 09 2025 05:03:52 %S A370970 8596,8790,9360,9380,9870,10752,12780,14760,14820,15628,15678,16038, %T A370970 16704,17082,17820,17920,18720,19084,19240,20457,20574,20754,21658, %U A370970 24056,24507,25803,26180,26910,27504,28156,28651,30296,30576,30752,31920,32760,32890,34902,36508,47320,58401,65128,65821 %N A370970 Numbers k which have a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together give 0,1,...,9 exactly once. %C A370970 The total number of digits in k, f1, ..., fr is ten, and they are all distinct. %H A370970 Hans Havermann, <a href="https://gladhoboexpress.blogspot.com/2024/04/pandigital-products.html">Pandigital Products</a>, Apr 13 2024 %e A370970 The complete list of terms: %e A370970 8596 = 2*14*307 %e A370970 8790 = 2*3*1465 %e A370970 9360 = 2*4*15*78 %e A370970 9380 = 2*5*14*67 %e A370970 9870 = 2*3*1645 %e A370970 10752 = 3*4*896 %e A370970 12780 = 4*5*639 %e A370970 14760 = 5*9*328 %e A370970 14820 = 5*39*76 %e A370970 15628 = 4*3907 %e A370970 15678 = 39*402 %e A370970 16038 = 27*594 = 54*297 %e A370970 16704 = 9*32*58 %e A370970 17082 = 3*5694 %e A370970 17820 = 36*495 = 45*396 %e A370970 17920 = 8*35*64 %e A370970 18720 = 4*5*936 %e A370970 19084 = 52*367 %e A370970 19240 = 8*37*65 %e A370970 20457 = 3*6819 %e A370970 20574 = 6*9*381 %e A370970 20754 = 3*6918 %e A370970 21658 = 7*3094 %e A370970 24056 = 8*31*97 %e A370970 24507 = 3*8169 %e A370970 25803 = 9*47*61 %e A370970 26180 = 4*7*935 %e A370970 26910 = 78*345 %e A370970 27504 = 3*9168 %e A370970 28156 = 4*7039 %e A370970 28651 = 7*4093 %e A370970 30296 = 7*8*541 %e A370970 30576 = 8*42*91 %e A370970 30752 = 4*8*961 %e A370970 31920 = 5*76*84 %e A370970 32760 = 8*45*91 %e A370970 32890 = 46*715 %e A370970 34902 = 6*5817 %e A370970 36508 = 4*9127 %e A370970 47320 = 8*65*91 %e A370970 58401 = 63*927 %e A370970 65128 = 7*9304 %e A370970 65821 = 7*9403 %Y A370970 Cf. A370972, A372106. %K A370970 nonn,base,fini,full %O A370970 1,1 %A A370970 _N. J. A. Sloane_, Apr 13 2024, following emails from _Ed Pegg Jr_ and _Hans Havermann_. The terms were computed by _Hans Havermann_