A370983 Triangle read by rows: T(n, k) = (n + k - 1)! / (k!*(n - k)!) if k > 0 and T(n, 0) = 0^n.
1, 0, 1, 0, 2, 3, 0, 3, 12, 20, 0, 4, 30, 120, 210, 0, 5, 60, 420, 1680, 3024, 0, 6, 105, 1120, 7560, 30240, 55440, 0, 7, 168, 2520, 25200, 166320, 665280, 1235520, 0, 8, 252, 5040, 69300, 665280, 4324320, 17297280, 32432400
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 2, 3; [3] 0, 3, 12, 20; [4] 0, 4, 30, 120, 210; [5] 0, 5, 60, 420, 1680, 3024; [6] 0, 6, 105, 1120, 7560, 30240, 55440; [7] 0, 7, 168, 2520, 25200, 166320, 665280, 1235520;
Crossrefs
Programs
-
Maple
T := (n, k) -> `if`(k = 0, k^n, (n + k - 1)! / (k!*(n - k)!)): seq(seq(T(n, k), k = 0..n), n = 0..9); A370983 := (n, k) -> local j; ifelse(n = 0, 1, ifelse(k = 0, 0, (-1)^k*mul((j - n) * (j + n) / (j + 1), j = 0..k - 1) / n)):
-
Mathematica
T[n_, k_] := If[n == 0, 1, If[k == 0, 0, (n + k - 1)! / (k! * (n - k)!)]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
-
Python
from math import prod def T(n, k): if n == 0: return 1 if k == 0: return 0 return (-1)**k * prod((j - n) * (j + n) / (j + 1) for j in range(k)) / n for n in range(7): print([T(n, k) for k in range(n + 1)])
-
SageMath
def A370983(n, k): if k > n: return 0 if n == 0: return 1 if k == 0: return 0 return binomial(n, k) * rising_factorial(n, k) // n for n in range(7): print([A370983(n, k) for k in range(n + 1)])
-
SageMath
# Added for the sake of reference only. # For example ScaledInv(A370983, 7) gives the first seven rows of A128899. def ScaledInv(T, dim): # We assume T(n, n) != 0 for all n. M = matrix(QQ, dim, T).inverse() for n in range(dim): c = M[n][n] M[n] = [M.row(n)[k] / c for k in range(dim)] return M
Comments