cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370994 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x)) ).

This page as a plain text file.
%I A370994 #11 Mar 07 2024 01:32:43
%S A370994 1,0,0,6,12,40,3060,23688,191520,9698400,158548320,2304973440,
%T A370994 100716073920,2627516361600,58513944513024,2512156283683200,
%U A370994 89046056086041600,2739316757454950400,124170651534918297600,5440968468533003212800,215067442349096186572800
%N A370994 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x)) ).
%H A370994 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A370994 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n+k)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
%o A370994 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x)))/x))
%o A370994 (PARI) a(n) = sum(k=0, n\3, (n+k)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(n+1);
%Y A370994 Cf. A052802, A370993, A370995.
%Y A370994 Cf. A351503, A370989.
%K A370994 nonn
%O A370994 0,4
%A A370994 _Seiichi Manyama_, Mar 06 2024