This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371003 #11 Mar 29 2024 10:22:48 %S A371003 0,0,0,4,45,281,1358,5790,23229,90667,350130,1348315,5194995,20051019, %T A371003 77548994,300527354,1166786517,4537546535,17672605394,68923231539, %U A371003 269128896899,1052049432887,4116715304850,16123801771169,63205303135475,247959266375901,973469712709278 %N A371003 a(n) = binomial(2*n-1,n) - binomial(n,2)*(binomial(n-1,2) + 2) - 1. %C A371003 a(n) is the number of ways to place n indistinguishable balls into n distinguishable boxes with at least 3 boxes remaining empty. %C A371003 a(n) is also the number of weak compositions of n into n parts in which at least three parts are zero. %e A371003 a(5)=45 since 5 can be written as 5+0+0+0+0, 0+5+0+0+0, etc. (5 such compositions); 4+1+0+0+0 (20 such compositions); 3+2+0+0+0 (20 such compositions). %t A371003 Table[Binomial[2n-1,n]-Binomial[n,2]*(Binomial[n-1,2]+2)-1,{n,27}] (* _James C. McMahon_, Mar 08 2024 *) %o A371003 (Python) %o A371003 from math import comb %o A371003 def A371003(n): return comb((n<<1)-1,n)-n-((m:=(n-1)**2)*(m+3)>>2) # _Chai Wah Wu_, Mar 29 2024 %Y A371003 Cf. A010763, A352027, A359435. %K A371003 nonn %O A371003 1,4 %A A371003 _Enrique Navarrete_, Mar 07 2024