This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371025 #13 Mar 17 2024 18:23:15 %S A371025 1,0,1,0,3,2,0,15,18,6,0,105,174,108,24,0,945,1950,1710,720,120,0, %T A371025 10395,25290,28080,16920,5400,720,0,135135,374850,497070,383040, %U A371025 176400,45360,5040,0,2027025,6267870,9574740,8883000,5266800,1965600,423360,40320 %N A371025 Triangle read by rows: T(n, k) = 2^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/2, n). %F A371025 T(n, k) = k * T(n-1, k-1) + (2*n - 2 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - _Werner Schulte_, Mar 17 2024 %e A371025 Triangle starts: %e A371025 [0] 1; %e A371025 [1] 0, 1; %e A371025 [2] 0, 3, 2; %e A371025 [3] 0, 15, 18, 6; %e A371025 [4] 0, 105, 174, 108, 24; %e A371025 [5] 0, 945, 1950, 1710, 720, 120; %e A371025 [6] 0, 10395, 25290, 28080, 16920, 5400, 720; %e A371025 [7] 0, 135135, 374850, 497070, 383040, 176400, 45360, 5040; %p A371025 A371025 := (n, k) -> local j; 2^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/2, n), j = 0..k); seq(seq(A371025(n, k), k = 0..n), n = 0..9); %o A371025 (SageMath) %o A371025 from functools import cache %o A371025 @cache %o A371025 def T(n, k): # after _Werner Schulte_ %o A371025 if k == 0: return 0**n %o A371025 if k == n: return n * T(n-1, n-1) %o A371025 return k * T(n-1, k-1) + (2*n - 2 + k) * T(n-1, k) %o A371025 for n in range(8): print([T(n, k) for k in range(n + 1)]) %o A371025 # _Peter Luschny_, Mar 17 2024 %Y A371025 Cf. A000142 (main diagonal), A001147 (column 1), A308939 (row sums). %K A371025 nonn,tabl %O A371025 0,5 %A A371025 _Peter Luschny_, Mar 08 2024