A371029 Numbers m such that if k = 27*m^3 + 3*m then k-1 and k+1 are primes.
1, 5, 6, 7, 13, 29, 39, 40, 45, 81, 120, 122, 127, 142, 143, 205, 214, 241, 293, 334, 341, 390, 391, 408, 486, 502, 506, 510, 577, 632, 640, 655, 669, 675, 686, 711, 720, 792, 793, 794, 802, 851, 859, 891, 901, 909, 972, 974, 992, 1000, 1041, 1078, 1082, 1096, 1099, 1111, 1206, 1258, 1280, 1423
Offset: 1
Keywords
Examples
1 is this sequence because 27*1^3 + 3*1 = 30 has 2 prime neighbors 29 and 31.
Crossrefs
Programs
-
Magma
[m: m in [1..1500] | IsPrime(27*m^3+3*m-1) and IsPrime(27*m^3+3*m+1)];
-
Mathematica
Select[Range[1500], And @@ PrimeQ[27*#^3 + 3*# + {-1, 1}] &] (* Amiram Eldar, Mar 26 2024 *)
Comments