This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371032 #37 Jul 09 2024 16:20:29 %S A371032 1,110,111001,1111000110,111110000111001,111111000001111000110, %T A371032 1111111000000111110000111001,111111110000000111111000001111000110, %U A371032 111111111000000001111111000000111110000111001,1111111111000000000111111110000000111111000001111000110 %N A371032 a(n) is the integer whose decimal digits are 0's or 1's in alternating runs of lengths n, n-1, n-2, ..., 3, 2, 1. %F A371032 a(n) = A007088(A371033(n)). - _Michel Marcus_, Jul 09 2024 %F A371032 a(n) = (10^(n*(n+1)/2) - 1)/9 - a(n-1). - _Robert Israel_, Jul 09 2024 %e A371032 a(1) = 1 has runlength 1; a(2) = 110 has runlengths 2,1; a(3) = 111001 has runlengths 3,2,1. %p A371032 f:= proc(n) option remember; (10^(n*(n+1)/2)-1)/9 - procname(n-1) end proc: %p A371032 f(1):= 1: %p A371032 map(f, [$1..30]); # _Robert Israel_, Jul 09 2024 %t A371032 Flatten[Table[Flatten[Map[ConstantArray[Mod[#, 2], n + 1 - #] &, Range[n]]], {n, 10}]] (* _Peter J. C. Moses_, Mar 08 2024 *) %o A371032 (Python) %o A371032 def A371032(n): %o A371032 c = 0 %o A371032 for i in range(n): %o A371032 c = (m:=10**(n-i))*c %o A371032 if i&1^1: %o A371032 c += (m-1)//9 %o A371032 return c # _Chai Wah Wu_, Mar 18 2024 %Y A371032 Cf. A000217 (binary lengths), A007088, A065447, A371033 (decimal version). %K A371032 nonn,base,easy %O A371032 1,2 %A A371032 _Clark Kimberling_, Mar 09 2024 %E A371032 New name from _Michel Marcus_, Jul 09 2024