This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371033 #32 Jul 09 2024 16:31:09 %S A371033 1,6,57,966,31801,2065350,266370105,68453106630,35115918982201, %T A371033 35993681099981766,73750982613738224697,302157703921043555451846, %U A371033 2475577920866839506242796601,40562343629382474008388259775430,1329187433441286490429798672020569145 %N A371033 a(n) is the integer whose binary expansion starts with 1 and such that the runs of identical bits have lengths n, n-1, n-2, ..., 3, 2, 1. %F A371033 a(n) == n (mod 2). - _Alois P. Heinz_, Jul 09 2024 %F A371033 a(n) = 2^(n*(n+1)/2) - 1 - a(n-1). - _Robert Israel_, Jul 09 2024 %e A371033 Representations as binary words (as in A371032) have decreasing runlengths: %e A371033 1: 1 %e A371033 6: 110 %e A371033 57: 111001 %e A371033 966: 1111000110 (runlengths 4,3,2,1) %p A371033 a:= n-> Bits[Join]([seq((1-(n-i) mod 2)$i, i=1..n)]): %p A371033 seq(a(n), n=1..15); # _Alois P. Heinz_, Jul 09 2024 %t A371033 Map[FromDigits[#, 2] &, Table[Flatten[Map[ConstantArray[Mod[#, 2], n + 1 - #] &, Range[n]]], {n, 16}]] (* _Peter J. C. Moses_, Mar 08 2024 *) %o A371033 (Python) %o A371033 def A371033(n): %o A371033 c = 0 %o A371033 for i in range(n): %o A371033 c <<= n-i %o A371033 if i&1^1: %o A371033 c += (1<<n-i)-1 %o A371033 return c # _Chai Wah Wu_, Mar 18 2024 %Y A371033 Cf. A006125, A007088, A065760, A126883, A371032 (binary version). %K A371033 nonn,base,easy %O A371033 1,2 %A A371033 _Clark Kimberling_, Mar 18 2024 %E A371033 New name from _Michel Marcus_, Jul 09 2024 %E A371033 a(15) corrected by _Alois P. Heinz_, Jul 09 2024