This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371037 #20 Mar 09 2024 20:30:15 %S A371037 60,120,168,336,360,504,660,720,1092,1320,1440,1512,2184,2448,2520, %T A371037 3420,4080,4896,5040,5616,6048,6072,6840,7800,7920,8160,9828,11232, %U A371037 12096,12144,12180,14880,15600,16320,19656,20160,24360,25308,25920,29120,29484,29760,31200,32736,34440 %N A371037 Orders of almost simple groups. %C A371037 A group G is almost simple if there exists a (non-abelian) simple group S for which S <= G <= Aut(S). %H A371037 Sébastien Palcoux, <a href="/A371037/b371037.txt">Table of n, a(n) for n = 1..113</a> %H A371037 T. Connor and D. Leemans, <a href="https://leemans.dimitri.web.ulb.be/atlaslat/">An atlas of subgroup lattices of finite almost simple groups</a>. %H A371037 GroupNames, <a href="https://people.maths.bris.ac.uk/~matyd/GroupNames/AS.html">Almost simple groups</a>. %H A371037 Groupprops, <a href="https://groupprops.subwiki.org/wiki/Almost_simple_group">Almost simple group</a>. %H A371037 Wikipedia, <a href="https://en.wikipedia.org/wiki/Almost_simple_group">Almost simple group</a>. %e A371037 For n = 1, 2, 3, 4 the values a(n) = 60, 120, 168, 336 correspond to the groups A5, S5, PSL(2,7), PGL(2,7), respectively. %o A371037 (GAP) %o A371037 m := 100000;; %o A371037 L := [];; %o A371037 it := SimpleGroupsIterator(2, m);; %o A371037 for g in it do %o A371037 ag := AutomorphismGroup(g);; %o A371037 iag := InnerAutomorphismsAutomorphismGroup(ag);; %o A371037 Inter := IntermediateSubgroups(ag, iag).subgroups;; %o A371037 LL := [Order(ag), Order(iag)];; %o A371037 for h in Inter do %o A371037 Add(LL, Order(h));; %o A371037 od; %o A371037 for o in LL do %o A371037 if o <= m and (not o in L) then %o A371037 Add(L, o);; %o A371037 fi; %o A371037 od; %o A371037 od; %o A371037 Sort(L);; %o A371037 Print(L);; %Y A371037 Cf. A001034. %K A371037 nonn %O A371037 1,1 %A A371037 _Sébastien Palcoux_, Mar 08 2024