This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371040 #12 Feb 16 2025 08:34:06 %S A371040 1,1,2,12,96,840,9720,143640,2399040,45239040,976752000,23537606400, %T A371040 621444700800,17936155036800,562855739846400,19038932398886400, %U A371040 690456599575142400,26748823900403404800,1102407824344284057600,48147134965603914240000 %N A371040 E.g.f. satisfies A(x) = exp(x^3*A(x)^2) / (1-x). %H A371040 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A371040 E.g.f.: sqrt(LambertW( -2*x^3/(1-x)^2 ) / (-2*x^3)). %F A371040 a(n) = n! * Sum_{k=0..floor(n/3)} (2*k+1)^(k-1) * binomial(n-k,n-3*k)/k!. %o A371040 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sqrt(lambertw(-2*x^3/(1-x)^2)/(-2*x^3)))) %o A371040 (PARI) a(n) = n!*sum(k=0, n\3, (2*k+1)^(k-1)*binomial(n-k, n-3*k)/k!); %Y A371040 Cf. A360601, A370875. %K A371040 nonn %O A371040 0,3 %A A371040 _Seiichi Manyama_, Mar 09 2024